100 points possible. Open notes, text, calculator. No laptops.

NAME: Solution

1. (5 pts each, 25 pts total) Suppose you have a CPU that is similar to the LC-3, but with a word size of 12-bits, and that the registers contain the following values:

 \[\begin{align*}
 R0 &= \text{x983} \\
 R1 &= \text{x36B} \\
 R2 &= \text{x901} \\
 R3 &= \text{xF02}
 \end{align*} \]

 a. If the value in R3 is interpreted as a 2's complement, signed integer, what is the decimal result?

 \[000111111110 \]

 b. If the value in R2 is interpreted as an unsigned integer, what is the decimal result?

 \[9 \times 16^2 + 9 \times 16^1 + 1 \times 16^0 = 2305 \]

 c. What value would be placed in R4 by the instruction ADD R4, R0, R3 (answer in hexadecimal)

 \[\begin{align*}
 &983 \\
 \times \text{xFO2} \\
 \hline
 &\text{x8B5}
 \end{align*} \]

 d. Did the instruction in part (c) result in a 2's complement overflow?

 Yes

 e. How many bytes of memory would the LC-3 support if addresses were 12-bits long instead of 16? Assume no other changes are made to the LC-3 architecture.

 \[2^6 \times 2 \text{ bytes/word} = 2^{13} \text{ bytes} \]

2. (10 pts) The following assembly program has one or more errors. Identify the error(s) and explain/show how to fix it/them.

 Code to perform \(B = A + 20 \):
 \[
 \text{LD} \quad R3, A \\
 \text{ADD} \quad R3, R3, #20 \\
 \text{ST} \quad R3, B \\
 \text{HALT}
 \]

 A .FILL xDEAD
 B .FILL xBEEF
 .END

 Could solve it by adding 15 and then 5.
3. (10 pts) Are there any values of \(f \) and \(g \) that would cause the following C code to print “False”? If your answer is yes, give an example of values for \(f \) and \(g \) that would result in the program printing “False”. If your answer is no, briefly explain why the program will never output “False”.

```c
float f = foo(); // foo() places some value in f
float g = bar(); // bar() places some value in g
if ((f + g - f) == g)
    printf("True\n");
else
    printf("False\n");
```

It can print false. If \(f \) is the largest floating point #, then the value of \(g \) will get lost.

\[f + g - f = 0 \text{ if } f \text{ is MAX} \]

4. (10 pts each, 30 pts total) The table to the right represents a snapshot of a portion of the memory of an LC-3 computer, the values in registers R0 through R3 are given below.

<table>
<thead>
<tr>
<th>Address</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>x3000</td>
<td>xB001</td>
</tr>
<tr>
<td>x3001</td>
<td>x643A</td>
</tr>
<tr>
<td>x3002</td>
<td>x3004</td>
</tr>
<tr>
<td>x3003</td>
<td>xA1FE</td>
</tr>
<tr>
<td>x3004</td>
<td>xC3C3</td>
</tr>
</tbody>
</table>

a. If the word located at address x3000 were treated as a machine instruction and executed, what value would be placed into register R0? \(\text{Answer in hex} \)

b. If the word located at address x3001 were treated as a machine instruction and executed, what value would be placed into register R2? \(\text{Answer in hex} \)

c. If the word located at address x3003 were treated as a machine instruction and executed, what value would be placed into register R0? \(\text{Answer in hex} \)
Consider the following LC-3 assembly language program:

```
.ORIG x3000
START  LEA   R0, ARRAY
        LDR   R1, R0, #0
        ADD   R0, R0, #1
AGAIN   LDR   R2, R0, #0
        BRnz  DONE
        NOT   R3, R1
        ADD   R3, R3, #1
        ADD   R3, R3, R2
        BRnz  SKIP
ST      R1, RESULT
DONE    ST    R1, RESULT
        HALT
ARRAY  .FILL x0010
        .FILL x0003
        .FILL xF382
        .FILL x303C
        .FILL x2020
        .FILL x0000
RESULT .BLKW 1
.END
```

a. Write the machine code instruction word that will be generated for the instruction “BRnzp AGAIN” in this code (answer in hex):

```
0FF7
```

b. What hex value will be found in the memory location labeled “RESULT” after this code is executed?

```
x303C
```

c. Describe in one sentence what this program does.

```
Finds the maximum value in an array.
```

6. (10 pts) The last page of this exam shows the datapath of the LC-3 CPU. Note that input B of the ALU is supplied via the SR2MUX. One of the inputs to this MUX comes from the instruction register (IR). Which two LC-3 instructions cause data from the IR to be forwarded to the ALU?

```
ADD and AND
```
IEEE 32-bit floating point format:

```
<table>
<thead>
<tr>
<th>sign</th>
<th>exponent (8 bits)</th>
<th>fraction (23 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>001111100000000000000000000000000000000000000000000000000</td>
<td></td>
</tr>
</tbody>
</table>
```

=0.15625