100 points possible. Open notes, text, calculator. No laptops.

NAME: __

1. (5 pts each, 25 pts total) Suppose you have a CPU that is similar to the LC-3, but with a **word size of 12-bits**, and that the registers contain the following values:

\[
\begin{align*}
R0 &= \text{x983} \\
R1 &= \text{x36B} \\
R2 &= \text{x901} \\
R3 &= \text{xF02}
\end{align*}
\]

a. If the value in R3 is interpreted as a 2’s complement, signed integer, what is the decimal result?

b. If the value in R2 is interpreted as an unsigned integer, what is the decimal result?

c. What value would be placed in R4 by the instruction \text{ADD R4, R0, R3} (answer in hexadecimal)

d. Did the instruction in part (c) result in a 2’s complement overflow?

e. How many bytes of memory would the LC-3 support if addresses were 12-bits long instead of 16? Assume no other changes are made to the LC-3 architecture.

2. (10 pts) The following assembly program has one or more errors. Identify the error(s) and explain/show how to fix it/them.

```assembly
; Code to perform B = A + 20;
.ORIG x3000
LD R3, A
ADD R3, R3, #20
ST R3, B
HALT
A .FILL xDEAD
B .FILL xBEEF
.END
```
3. **(10 pts)** Are there any values of \(f \) and \(g \) that would cause the following C code to print “False”? If your answer is yes, give an example of values for \(f \) and \(g \) that would result in the program printing “False”. If your answer is no, briefly explain why the program will never output “False”.

```c
float f = foo();  // foo() places some value in f
float g = bar();  // bar() places some value in g
if ((f + g - f) == g)
    printf("True\n");
else
    printf("False\n");
```

4. **(10 pts each, 30 pts total)** The table to the right represents a snapshot of a portion of the memory of an LC-3 computer, the values in registers R0 through R3 are given below.

<table>
<thead>
<tr>
<th>Address</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>x3000</td>
<td>xE001</td>
</tr>
<tr>
<td>x3001</td>
<td>x643A</td>
</tr>
<tr>
<td>x3002</td>
<td>x3004</td>
</tr>
<tr>
<td>x3003</td>
<td>xA1FE</td>
</tr>
<tr>
<td>x3004</td>
<td>xC3C3</td>
</tr>
</tbody>
</table>

a. If the word located at address x3000 were treated as a machine instruction and executed, what value would be placed into register R0? *(Answer in hex)*

b. If the word located at address x3001 were treated as a machine instruction and executed, what value would be placed into register R2? *(Answer in hex)*

c. If the word located at address x3003 were treated as a machine instruction and executed, what value would be placed into register R0? *(Answer in hex)*
5. (5 pts each, 15 pts total) Consider the following LC-3 assembly language program:

```
.ORIG  x3000
START  LEA    R0, ARRAY
        LDR    R1, R0, #0
        ADD    R0, R0, #1
AGAIN  LDR    R2, R0, #0
        BRz    DONE
        NOT    R3, R1
        ADD    R3, R3, #1
        ADD    R3, R3, R2
        BRnz   SKIP
        ADD    R1, R2, #0
SKIP   ADD    R0, R0, #1
        BRnzp  AGAIN
DONE   ST    R1, RESULT
        HALT
ARRAY  .FILL  x0010
        .FILL  x0003
        .FILL  xF382
        .FILL  x303C
        .FILL  x2020
        .FILL  x0000
RESULT .BLKW  1
.END
```

a. Write the machine code instruction word that will be generated for the instruction “BRnzp AGAIN” in this code (answer in hex):

b. What hex value will be found in the memory location labeled “RESULT” after this code is executed?

c. Describe in one sentence what this program does.

6. (10 pts) The last page of this exam shows the datapath of the LC-3 CPU. Note that input B of the ALU is supplied via the SR2MUX. One of the inputs to this MUX comes from the instruction register (IR). Which two LC-3 instructions cause data from the IR to be forwarded to the ALU?
IEEE 32-bit floating point format:

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|
|.sign | exponent (8 bits) | fraction (23 bits) |

```
0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = 0.15625
```